Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn.

نویسندگان

  • Marta Perez
  • Satyan Lakshminrusimha
  • Stephen Wedgwood
  • Lyubov Czech
  • Sylvia F Gugino
  • James A Russell
  • Kathryn N Farrow
  • Robin H Steinhorn
چکیده

In the pulmonary vasculature, cGMP levels are regulated by soluble guanylate cyclase (sGC) and phosphodiesterase 5 (PDE5). We previously reported that lambs with persistent pulmonary hypertension of the newborn (PPHN) demonstrate increased reactive oxygen species (ROS) and altered sGC and PDE5 activity, with resultant decreased cGMP. The objective of this study was to evaluate the effects of hydrocortisone on pulmonary vascular function, ROS, and cGMP in the ovine ductal ligation model of PPHN. PPHN lambs were ventilated with 100% O(2) for 24 h. Six lambs received 5 mg/kg hydrocortisone every 8 h times three doses (PPHN-hiHC), five lambs received 3 mg/kg hydrocortisone followed by 1 mg·kg(-1)·dose(-1) times two doses (PPHN-loHC), and six lambs were ventilated with O(2) alone (PPHN). All groups were compared with healthy 1-day spontaneously breathing lambs (1DSB). O(2) ventilation of PPHN lambs decreased sGC activity, increased PDE5 activity, and increased ROS vs. 1DSB lambs. Both hydrocortisone doses significantly improved arterial-to-alveolar ratios relative to PPHN lambs, decreased PDE5 activity, and increased cGMP relative to PPHN lambs. High-dose hydrocortisone also increased sGC activity, decreased PDE5 expression, decreased ROS, and increased total vascular SOD activity vs. PPHN lambs. These data suggest that hydrocortisone treatment in clinically relevant doses improves oxygenation and decreases hyperoxia-induced changes in sGC and PDE5 activity, increasing cGMP levels. Hydrocortisone reduces ROS levels in part by increasing SOD activity in PPHN lambs ventilated with 100% O(2.) We speculate that hydrocortisone increases cGMP by direct effects on sGC and PDE5 expression and by attenuating abnormalities induced by oxidant stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension.

Phosphodiesterase 5 (PDE5) and soluble guanylate cyclase (sGC) are key regulators of cGMP and pulmonary vascular tone. We sought to determine the impact of mechanical ventilation with O(2) with or without inhaled nitric oxide (iNO) or recombinant human Cu/Zn SOD (rhSOD) on sGC, PDE5, and cGMP in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN). PPHN lam...

متن کامل

The cGMP-specific phosphodiesterase inhibitor E4021 dilates the pulmonary circulation.

We investigated the pulmonary vascular effects of E4021, a potent inhibitor of cGMP-specific phosphodiesterase, in control late-gestation fetal lambs, and in newborn lambs with persistent pulmonary hypertension (PPHN) after prenatal ligation of the ductus arteriosus. E4021 alone significantly relaxed fifth-generation pulmonary arteries isolated from control fetal lambs, an effect completely blo...

متن کامل

Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn.

Similar to infants born with persistent pulmonary hypertension of the newborn (PPHN), there is an increase in circulating endothelin-1 (ET-1) and decreased cGMP-mediated vasodilation in an ovine model of PPHN. These abnormalities lead to vasoconstriction and vascular remodeling. Our previous studies have demonstrated that reactive oxygen species (ROS) levels are increased in pulmonary arterial ...

متن کامل

Intrauterine inflammation causes pulmonary hypertension and cardiovascular sequelae in preterm lambs.

Chorioamnionitis increases the risk and severity of persistent pulmonary hypertension of the newborn in preterm infants. Exposure of preterm fetal lambs to intra-amniotic (IA) lipopolysaccharide (LPS) induces chorioamnionitis, causes hypertrophy of pulmonary resistance arterioles, and alters expression of pulmonary vascular growth proteins. We investigated the cardiopulmonary and systemic hemod...

متن کامل

Persistent Pulmonary Hypertension of the Newborn: Novel Mechanisms and Therapies

Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome characterized by failure of the lung circulation to achieve or sustain the normal drop in pulmonary vascular resistance (PVR) at birth. Past laboratory studies identified the important role of nitric oxide (NO)-cGMP signaling in the regulation of the perinatal lung circulation, leading to the development and applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 302 6  شماره 

صفحات  -

تاریخ انتشار 2012